KnigaRead.com/
KnigaRead.com » Научные и научно-популярные книги » Радиотехника » Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

На нашем сайте KnigaRead.com Вы можете абсолютно бесплатно читать книгу онлайн Пауль Хоровиц, "Искусство схемотехники. Том 1 [Изд.4-е]" бесплатно, без регистрации.
Перейти на страницу:

Существуют два вида источников опорного напряжения - стабилитроны и так называемые источники опорного напряжения с шириной запрещенной зоны полупроводника («UБЭ - стабилитроны», см. разд. 6.15); каждый из них может использоваться как сам по себе, так и в составе ИМС источника опорного напряжения.


6.14. Стабилитроны

Простейшим видом источников опорного напряжения является стабилитрон — прибор, который мы рассматривали в разд. 1.06. В сущности это диод, работающий при обратном смещении на участке, соответствующем напряжению пробоя, где ток пробоя очень быстро возрастает при дальнейшем росте напряжения. Чтобы использовать этот диод в качестве источника опорного напряжения, надо обеспечить прохождение через него приблизительно постоянного тока. Обычно это делается с помощью резистора, подключенного к достаточно высокому напряжению, и таким образом строится наиболее примитивный стабилизированный источник.

Стабилитроны выпускаются на целый ряд значений напряжения — от 2 до 200 В (их напряжения имеют тот же набор значений, что и сопротивления стандартных 5 %-ных резисторов), с допустимой мощностью рассеяния от долей ватта до 50 Вт и допуском на напряжение стабилизации от 1 до 20 %. Привлекательные на первый взгляд в качестве опорных источников напряжения для различных целей стабилитроны, однако, не так просты в использовании по многим причинам: они имеют конечный набор значений напряжения, у них большой допуск на напряжение стабилизации (кроме дорогих прецизионных стабилитронов), они сильно шумят и их напряжение зависит от тока и температуры. Вот пример двух последних эффектов: стабилитрон на 27 В из распространенной серии 1N5221 стабилитронов на 500 мВт имеет температурный коэффициент порядка +0,1 %/°С, и в силу этого его напряжение меняется на 1 %, когда ток изменяется от 10 до 50 % от максимального.

Есть исключение из правила о плохих характеристиках стабилитронов. Оказывается, что в окрестности значения напряжения стабилизации 6 В стабилитроны мало чувствительны к изменениям тока и при этом имеют почти нулевой температурный коэффициент. Этот эффект виден на кривых рис. 6.19, полученных путем измерения стабилитронов с разными напряжениями. Это характерное поведение связано с тем, что в стабилитронах в действительности используются два разных механизма пробоя: зенеровский и лавинный; первый — при низком напряжении, второй — при высоком.




Рис. 6.19. Зависимость дифференциального сопротивления стабилитронов (а) и вариаций напряжения стаблизации стабилитронов (б) от номинального напряжения стабилизации

(с разрешения Motorola, Inc.).


Если стабилитрон используется только как стабильный источник напряжения и вам все равно, каково будет это напряжение, то лучше всего взять один из компенсированных опорных стабилитронов, состоящих из стабилитрона приблизительно на 5,6 В и последовательно с ним соединенного диода, смещенного в прямом направлении. Напряжение стабилитрона выбирается так, чтобы взаимно компенсировать положительный температурный коэффициент стабилитрона и отрицательный температурный коэффициент диода, соответствующий около — 2,1 мВ/°С.

Как видно из рис. 6.20, температурный коэффициент зависит от рабочего тока, а также от напряжения стабилитрона. Поэтому, выбирая ток стабилитрона, можно как-то «подстроить» температурный коэффициент. Из таких стабилитронов со встроенными последовательно диодами получаются неплохие источники опорного напряжения. Для примера: серия дешевых стабилитронов на 6,2 В 1N821 имеет температурные коэффициенты от 10-4/°С (1N821) до 5·10-6/°С (1N829), а стабилитроны 1N940 и 1N946 на 9 В и 11,7 В имеют температурный коэффициент 2·10-6/°С.



Рис. 6.20. Зависимость температурного коэффициента напряжения стабилизации стабилитронов от их номинального напряжения

(с разрешения Motorola, Inc.).


Задание рабочего тока стабилитрона. Описанные выше компенсированные стабилитроны могут использоваться в схемах в качестве источников стабильного напряжения, но надо обеспечить питание их постоянным током. Для серии 1N821 изготовителем указано 6,2 В +5 % при токе 7,5 мА с дифференциальным сопротивлением 15 Ом; таким образом, изменение тока на 1 мА изменяет напряжение в три раза сильнее, чем изменение температуры от -55 до +100 °C (для прибора 1N829). На рис. 6.21 показано, как довольно просто можно обеспечить постоянный ток смещения прецизионного стабилитрона.



Рис. 6.21.


Операционный усилитель включен как неинвертирующий усилитель и имеет на выходе стабильное напряжение, равное +10,0 В, которое используется для получения прецизионного тока 7,5 мА. Это самозапускающаяся схема, но она может включиться с любой полярностью на выходе! При «неправильной» полярности стабилитрон работает как обычный диод с прямым смещением. Включение операционного усилителя от однополярного источника питания снимает эту странную особенность. Прежде чем ставить в схему тот или иной ОУ, убедитесь, что его диапазон синфазных входных сигналов включает в себя потенциал минусовой шины источника питания (ОУ с «однополярным питанием»).

Существуют компенсированные специальные стабилитроны с гарантированной временной стабильностью напряжения; этот параметр, как правило, не указывается. Примеры - серия 1N3501 и 1N4890. Стабилитроны такого типа имеют гарантированную стабильность 5·10-6/1000 ч или еще лучше. Они недешевы. В табл. 6.5 собраны характеристики некоторых стабилитронов и диодных источников опорного напряжения, а в табл. 6.6 — ряд представителей двух популярных серий стабилитронов общего назначения на 500 мВт.

Стабилитронные ИМС. Для достижения свойственных стабилизатору 723 превосходных характеристик (стабильность Uоп 30·10-6 / °С) используется компенсированный стабилитрон. Стабилизатор 723 — вполне приличный источник опорного напряжения, и совместно с необходимыми навесными элементами эта ИМС может использоваться для получения стабильного источника с любым желательным напряжением.

Стабилизатор 723, применяемый в качестве опорного источника напряжения, служит примером «трехвыводного» опорного источника, т. е. источника, для работы которого нужен внешний источник питания; в схему источника входят цепь смещения стабилитрона и буферный усилитель выходного напряжения. К трехвыводным стабилитронным ИМС относятся превосходная LM369 фирмы National (1,5·10-6/°C тип.) и REF10KM фирмы Burr-Brown (температурный коэффициент не более 10-6/°С); в своих схемах мы часто используем недорогую ИМС Motorola MCI404 (которая фактически является UБЭ-стабилитроном, см. ниже). Вскоре мы более подробно рассмотрим трехвыводные источники опорного напряжения, а сейчас обратимся к двухвыводным. Прецизионные температурно-компенсированные стабилитронные ИМС выпускаются в виде двухвыводных устройств: с точки зрения внешних электрических соединений они выглядят просто как стабилитроны, хотя в действительности содержат еще ряд активных элементов для улучшения характеристик (наиболее существенная — постоянство стабилизированного напряжения при заданном токе).

Пример — недорогая схема LM329 с напряжением ~ 6,9 В. В лучшем варианте ее темп, коэффициент равен 6·10-6/°С (тип.), 10-5/°С (макс.) при постоянном токе 1 мА. Перечислим некоторые стабилитронные ИМС с необычными характеристиками: температурно-стабилизированная LM399 (0,3·10-6/°С тип.), микромощная LM385 (которая работает от тока, доходящего до 10 мкА) и выпускаемая фирмой Linear Technology ИМС LTZ1000 с ее потрясающими параметрами: типовой температурный коэффициент 0,05·10-6/°С, дрейф 0,3·10-6/месяц и низкочастотный шум 1,2 мкВ.

К несчастью, стабилитронные ИМС, как и их дискретные аналоги, сильно шумят. Шум становится сильнее для стабилизаторов, использующих лавинный пробой, т. е. с напряжением стабилитрона больше 6 В. На рис. 6.22 показан график шума стабилитронного источника 723.



Рис. 6.22. Зависимость напряжения шумов малошумящего стабилитрона, подобного тому, который используется в стабилизаторе 723, от рабочего тока стабилитрона.


Этот шум связан с поверхностными эффектами и применение стабилитронной структуры с так называемым захороненным (скрытым) или подповерхностным слоем может сильно улучшить стабильность стабилитрона и существенно уменьшить его шум. Так, только что упоминавшийся источник опорного напряжения LTZ1000 на стабилитроне с захороненным слоем - самый совершенный из всех типов источников опорного напряжения. LM369 и REF10KM также имеют очень малый шум. В табл. 6.7 перечислены характеристики почти всех выпускаемых стабилитронных ИМС, как на основе собственно стабилитронов, так и на UБЭ-стабилитронах.

Перейти на страницу:
Прокомментировать
Подтвердите что вы не робот:*